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·

Part I

Electric Dipole Moments
as Probes of New Physics
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Electric and Magnetic Dipole Moments

interactions of a particle with spin ~S
with an electric and magnetic field

H = −µ
~S
|S|

· ~B − d
~S
|S|

· ~E

electric dipole moment d
magnetic dipole moment µ
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Properties under C, P, T

Properties under Charge Conjugation C, Parity P, and Time Reversal T

T : ~E → +~E ~B → −~B ~S → −~S

P : ~E → −~E ~B → +~B ~S → +~S

H = −µ
~S
|S|

· ~B − d
~S
|S|

· ~E
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Properties under C, P, T

Properties under Charge Conjugation C, Parity P, and Time Reversal T

T : ~E → +~E ~B → −~B ~S → −~S

P : ~E → −~E ~B → +~B ~S → +~S

H = −µ
~S
|S|

· ~B − d
~S
|S|

· ~E

MDMs are P even and T even
EDMs are P odd and T odd

assuming CPT invariance
(= pretty safe assumption):

MDMs are CP conserving
EDMs are CP violating
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Relevance for Fundamental Particle Physics

Are EDM measurements accurate enough to probe scales that are
relevant for high energy physics? (electro-weak scale, TeV scale)

Wolfgang Altmannshofer (PI) Electric Dipole Moments April 1, 2014 7 / 39



Relevance for Fundamental Particle Physics

Are EDM measurements accurate enough to probe scales that are
relevant for high energy physics? (electro-weak scale, TeV scale)

Typical energy resolution in modern EDM experiments

∆Energy ∼ 10−6Hz ∼ 10−21eV
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Relevance for Fundamental Particle Physics

Are EDM measurements accurate enough to probe scales that are
relevant for high energy physics? (electro-weak scale, TeV scale)

Typical energy resolution in modern EDM experiments

∆Energy ∼ 10−6Hz ∼ 10−21eV

translates into sensitivities of EDMs at the order of

d .
∆Energy

electric field
∼ 10−25ecm , electric field ∼ 104V/cm
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Relevance for Fundamental Particle Physics

Are EDM measurements accurate enough to probe scales that are
relevant for high energy physics? (electro-weak scale, TeV scale)

Typical energy resolution in modern EDM experiments

∆Energy ∼ 10−6Hz ∼ 10−21eV

translates into sensitivities of EDMs at the order of

d .
∆Energy

electric field
∼ 10−25ecm , electric field ∼ 104V/cm

Theoretically inferred scaling of EDMs (see later)

d ∼
1

16π2 ×
1MeV
Λ2 ⇒ Λ & 1TeV
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Relevance for Fundamental Particle Physics

Are EDM measurements accurate enough to probe scales that are
relevant for high energy physics? (electro-weak scale, TeV scale)

Typical energy resolution in modern EDM experiments

∆Energy ∼ 10−6Hz ∼ 10−21eV

translates into sensitivities of EDMs at the order of

d .
∆Energy

electric field
∼ 10−25ecm , electric field ∼ 104V/cm

Theoretically inferred scaling of EDMs (see later)

d ∼
1

16π2 ×
1MeV
Λ2 ⇒ Λ & 1TeV

EDM experiments are relevant for fundamental particle physics
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Relativistic Generalization of EDMs and MDMs

Interaction of a fermion f with the photon field Aµ, Fµν = ∂µAν − ∂νAµ

−df

~S
|S|

· ~E → e(f̄γµf )Aµ+

−µf

~S
|S|

· ~B → e(f̄γµf )Aµ

the usual minimal coupling of fermions with the photon give rise to a
magnetic moment with gyromagnetic factor g = 2

µf = gf
e

2mf
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Relativistic Generalization of EDMs and MDMs

Interaction of a fermion f with the photon field Aµ, Fµν = ∂µAν − ∂νAµ

−df

~S
|S|

· ~E → e(f̄γµf )Aµ+df
i
2
(f̄σµνγ5f )Fµν

−µf

~S
|S|

· ~B → e(f̄γµf )Aµ + af
e

4mf
(f̄σµν f )Fµν

the usual minimal coupling of fermions with the photon give rise to a
magnetic moment with gyromagnetic factor g = 2

the dimension 5 operators induce an electric dipole moment df and an
anomalous magnetic moment af

µf = gf
e

2mf
, (gf − 2) = 2af

df and af are described by non-renormalizable interactions of fermions
with the photon. They are absent for elementary fermions at the classical
level, but can be induced by loop corrections.
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Electric Dipole Moments
in the Standard Model
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Sources of CP Violation in the Standard Model

The Standard Model of Particle Physics
CP is violated in nature

BR(KL → π+π−) 6= 0

(Cronin, Fitch 1964)

can be accommodated
in the Standard Model

with 3 generations
→ CKM matrix
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Sources of CP Violation in the Standard Model

The Standard Model of Particle Physics
CP is violated in nature

BR(KL → π+π−) 6= 0

(Cronin, Fitch 1964)

can be accommodated
in the Standard Model

with 3 generations
→ CKM matrix

Standard Model
contains another source

of CP violation:
the QCD theta term

more on that later ...
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The CKM Matrix

parametrizes the misalignment of
up-type quarks and down-type quarks

in flavor space

appears in the weak interactions of
quarks with the W boson (charged current)

VCKM =





Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb





unitary 3 × 3 matrix → 3 angles 6 phases

5 phases can be reabsorbed
by redefinition of the quark fields

u → eiφu u , d → eiφd d , . . .

CKM matrix contains
one physical CP violating phase
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Tree Level Measurement of the CKM Phase

The CKM phase is O(1)
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CKM Phase from Fits of the Unitarity Triangle

Within the experimental and
theoretical uncertainties,
the CKM matrix gives a

consistent description of all
observed flavor and CP

violating phenomena

Extraction of the CKM phase
from the global fit gives

γ = 69.7+1.3
−2.8
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
e

16π2

◮ loop suppressed
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
e

16π2 GF

◮ loop suppressed

◮ first order in the
weak interactions
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
e

16π2 GF md

◮ loop suppressed

◮ first order in the
weak interactions

◮ helicity suppressed
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
e

16π2 GF md Im(Vtd )

◮ loop suppressed

◮ first order in the
weak interactions

◮ helicity suppressed

◮ pick up a CKM element that
contains a CP violating phase
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Quark EDMs from the CKM Matrix

try 1 loop with weak interactions to access the phase of the CKM matrix

d d

γ

t

W

dd ∝
e

16π2 GF md Im(Vtd V ∗
td ) = 0

◮ loop suppressed

◮ first order in the
weak interactions

◮ helicity suppressed

◮ pick up a CKM element that
contains a CP violating phase

◮ 1 loop is not sufficient...
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Quark EDMs from the CKM Matrix

try 2 loops with weak interactions to access the phase of the CKM matrix

d

t

b c d

W

W

dd ∝
e

(16π2)2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0
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Quark EDMs from the CKM Matrix

try 2 loops with weak interactions to access the phase of the CKM matrix

d

t

b c d

W

W

dd ∝
e

(16π2)2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0

◮ 2 loop suppressed
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Quark EDMs from the CKM Matrix

try 2 loops with weak interactions to access the phase of the CKM matrix

d

t

b c d

W

W

dd ∝
e

(16π2)2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0

◮ 2 loop suppressed

◮ second order in the
weak interactions
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Quark EDMs from the CKM Matrix

try 2 loops with weak interactions to access the phase of the CKM matrix

d

t

b c d

W

W

dd ∝
e

(16π2)2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0

◮ 2 loop suppressed

◮ second order in the
weak interactions

◮ pick up CKM combination with
non-zero CP phase
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Quark EDMs from the CKM Matrix

try 2 loops with weak interactions to access the phase of the CKM matrix

d

t

b c d

W

W

dd ∝
e

(16π2)2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0

◮ 2 loop suppressed

◮ second order in the
weak interactions

◮ pick up CKM combination with
non-zero CP phase

seems to work!
however when one adds up all

2-loop diagrams one still gets 0...
(Shabalin, 1981)
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Quark EDMs from the CKM Matrix

first non-vanishing contribution to quark EDMs arises at the 3-loop level

d t

b

c d

γ

g

W W

dd ∝
e

(16π2)2

g2
s

16π2 G2
F m2

cmd

×Im(Vtd V ∗
tbVcbV ∗

cd ) 6= 0

◮ two electro-weak loops

◮ one additional gluon loop

dd ≃ 10−34ecm

(Khriplovich 1986,
Czarnecki, Krause 1997)
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Lepton EDMs from the CKM Matrix

for lepton EDMs one needs at least one additional loop
to switch from leptons to quarks and to access the CKM phase
(Khriplovich, Pospelov 1991)

de ∝
e

(16π2)3

g2
s

16π2 G3
F m2

cm2
s me

×Im(Vtd Vtb∗VcbV ∗
cd )

◮ three electro-weak loops

◮ one additional gluon loop

de ≃ 10−44ecm

(Pospelov, Ritz 2013)
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Experimentally Accessible EDMs

◮ EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)
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Experimentally Accessible EDMs

◮ EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)

◮ EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

◮ EDMs of neutron, proton, deuteron

◮ EDM of the muon

need to predict the EDMs of composite systems
in terms of EDMs of elementary particles
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Experimentally Accessible EDMs
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CP Violating Interactions

CP-odd Lagrangian at the GeV scale

bla
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CP Violating Interactions

CP-odd Lagrangian at the GeV scale

g2
s

32π2 θ̄GA
µνG̃µν, A bla

QCD theta term

terms at dimension 4
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CP Violating Interactions

CP-odd Lagrangian at the GeV scale

g2
s

32π2 θ̄GA
µνG̃µν, A

df
i
2
(f̄σµνγ5f )Fµν

dc
q

igs

2
(q̄ασ

µνT A
αβγ5qβ)GA

µν

bla
QCD theta term

EDMs of quarks and leptons

chromo EDMs (CEDMs) of quarks

terms at dimension 4 , dimension 5
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CP Violating Interactions

CP-odd Lagrangian at the GeV scale

g2
s

32π2 θ̄GA
µνG̃µν, A

df
i
2
(f̄σµνγ5f )Fµν

dc
q

igs

2
(q̄ασ

µνT A
αβγ5qβ)GA

µν

w
3

f ABCGA
µνG̃νρ, BGµ, C

ρ

Cij(f̄i fi)(f̄j iγ5fj)

bla
QCD theta term

EDMs of quarks and leptons

chromo EDMs (CEDMs) of quarks

Weinberg three gluon operator

CP violating 4 fermion operators

terms at dimension 4 , dimension 5 , dimension 6, ...
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CP Violating Interactions
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Calculation of EDMs

EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)

e.g. |dTl | ≃

Wolfgang Altmannshofer (PI) Electric Dipole Moments April 1, 2014 19 / 39



Calculation of EDMs

EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)

contain an unpaired electron
→ mainly sensitive to the electron EDM that sees an

enhanced effective electric field inside the atom/molecule

e.g. |dTl | ≃ de
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Calculation of EDMs

EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)

contain an unpaired electron
→ mainly sensitive to the electron EDM that sees an

enhanced effective electric field inside the atom/molecule

typical enhancement factor for atoms

dpara ∼
10 Z 3αem

J(J + 1/2)(J + 1)2 de ,
J: angular momentum

Z: atomic number

for polar molecules the enhancement can be even larger

e.g. |dTl | ≃ 585 de
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Calculation of EDMs

EDMs of paramagnetic systems:
atoms (Tl, Fr, ...) and molecules (YbF, ThO, ...)

contain an unpaired electron
→ mainly sensitive to the electron EDM that sees an

enhanced effective electric field inside the atom/molecule

typical enhancement factor for atoms

dpara ∼
10 Z 3αem

J(J + 1/2)(J + 1)2 de ,
J: angular momentum

Z: atomic number

for polar molecules the enhancement can be even larger

additional contributions from CP-odd electron nucleon couplings
(induced by CP-odd 4 fermion contact terms)

e.g. |dTl | ≃ 585 de + e 43 GeV × (C(0)
S − 0.2C(1)

S ) + ...

Wolfgang Altmannshofer (PI) Electric Dipole Moments April 1, 2014 19 / 39



Calculation of EDMs

EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

e.g. |dHg | ≃
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Calculation of EDMs

EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

all electron spins are paired up
suppressed sensitivity to the electron EDM

e.g. |dHg | ≃ 10−2 de
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Calculation of EDMs

EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

all electron spins are paired up
suppressed sensitivity to the electron EDM

sensitivity to the EDM of the nucleus,
that is mainly induced by CP-odd pion nucleon couplings,

that in turn depend mainly on the quark chromo-EDMs

e.g. |dHg | ≃ 10−2 de + 7 × 10−3 e (d̃u − d̃d )
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Calculation of EDMs

EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

all electron spins are paired up
suppressed sensitivity to the electron EDM

sensitivity to the EDM of the nucleus,
that is mainly induced by CP-odd pion nucleon couplings,

that in turn depend mainly on the quark chromo-EDMs

additional contributions from CP-odd electron nucleon couplings
(induced by CP-odd 4 fermion contact terms)

e.g. |dHg | ≃ 10−2 de + 7 × 10−3 e (d̃u − d̃d ) + O(CS) + ...
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Calculation of EDMs

EDMs of diamagnetic atoms (Hg, Ra, Rn, ...)

all electron spins are paired up
suppressed sensitivity to the electron EDM

sensitivity to the EDM of the nucleus,
that is mainly induced by CP-odd pion nucleon couplings,

that in turn depend mainly on the quark chromo-EDMs

additional contributions from CP-odd electron nucleon couplings
(induced by CP-odd 4 fermion contact terms)

e.g. |dHg | ≃ 10−2 de + 7 × 10−3 e (d̃u − d̃d ) + O(CS) + ...

most of the terms come with uncertainties of > O(1)
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Calculation of EDMs

proton and neutron EDMs

e.g. dn ≃
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Calculation of EDMs

proton and neutron EDMs

high sensitivity to the constituent quark EDMs

e.g. dn ≃ 1.4 (dd −
1
4

du)
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Calculation of EDMs

proton and neutron EDMs

high sensitivity to the constituent quark EDMs

additional contributions from CP-odd pion nucleon couplings
(mainly induced by chromo-EDMs)

e.g. dn ≃ 1.4 (dd −
1
4

du) + 1.1 e (d̃d +
1
2

d̃u)
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Calculation of EDMs

proton and neutron EDMs

high sensitivity to the constituent quark EDMs

additional contributions from CP-odd pion nucleon couplings
(mainly induced by chromo-EDMs)

also the Weinberg 3 gluon operator can contribute

e.g. dn ≃ 1.4 (dd −
1
4

du) + 1.1 e (d̃d +
1
2

d̃u) + e 22 MeV w

Wolfgang Altmannshofer (PI) Electric Dipole Moments April 1, 2014 21 / 39



Calculation of EDMs

proton and neutron EDMs

high sensitivity to the constituent quark EDMs

additional contributions from CP-odd pion nucleon couplings
(mainly induced by chromo-EDMs)

also the Weinberg 3 gluon operator can contribute

additional contributions from CP-odd 4 fermion operators

e.g. dn ≃ 1.4 (dd −
1
4

du) + 1.1 e (d̃d +
1
2

d̃u) + e 22 MeV w +O(Cij) + ...
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Calculation of EDMs

proton and neutron EDMs

high sensitivity to the constituent quark EDMs

additional contributions from CP-odd pion nucleon couplings
(mainly induced by chromo-EDMs)

also the Weinberg 3 gluon operator can contribute

additional contributions from CP-odd 4 fermion operators

e.g. dn ≃ 1.4 (dd −
1
4

du) + 1.1 e (d̃d +
1
2

d̃u) + e 22 MeV w +O(Cij) + ...

most of the terms have uncertainties of O(1)
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Current Experimental Bounds

[Griffith et al. 2009 (Hg); Baker et al. 2006 (neutron);
Regan et al. 2002 (Tl); Hudson et al. 2011 (YbF); ACME 2013 (ThO)]

dHg < 3.1 × 10−29 ecm

dn < 2.9 × 10−26 ecm

bounds on the electron EDM assume the absence of
contributions from CP-odd electron nucleon couplings
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Disentangling Different Contributions

Jung, 2013

different paramagnetic
atoms/molecules have different

dependence on the electron
EDM de and the CP-odd electron

nucleon interaction CS .

considering many systems
simultaneously allows to bound

de and CS separately
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SM Predictions for EDMs and the QCD theta term

QCD theta term:
g2

s

32π2 θ̄GG̃

the QCD theta term is a dimension 4 operator
→ not suppressed by any high scale
→ generically expected to be O(1)
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SM Predictions for EDMs and the QCD theta term

QCD theta term:
g2

s

32π2 θ̄GG̃

the QCD theta term is a dimension 4 operator
→ not suppressed by any high scale
→ generically expected to be O(1)

also contributes to the EDMs of hadronic systems

dn ∼ eθ̄
mumd

mu + md

1
m2

n
∼ θ̄ × 6 × 10−17ecm

experimental bound on dn translates into the limit: θ . 10−9

→ strong CP problem
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Dynamical Relaxation of θ̄

add an axion: a pseudoscalar that couples to GG̃

L = θ̄
g2

s

32π2 GG̃ +
1
2
∂µa∂µa +

a
fa

g2
s

32π2 GG̃
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Dynamical Relaxation of θ̄

add an axion: a pseudoscalar that couples to GG̃

L = θ̄
g2

s

32π2 GG̃ +
1
2
∂µa∂µa +

a
fa

g2
s

32π2 GG̃

=

(

θ̄ +
a
fa

)

g2
s

32π2 GG̃ +
1
2
∂µa∂µa
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Dynamical Relaxation of θ̄

add an axion: a pseudoscalar that couples to GG̃

L = θ̄
g2

s

32π2 GG̃ +
1
2
∂µa∂µa +

a
fa

g2
s

32π2 GG̃

=

(

θ̄ +
a
fa

)

g2
s

32π2 GG̃ +
1
2
∂µa∂µa

below the QCD scale a potential for the axion is induced

V (a) ∝
(

θ̄ +
a
fa

)2

axion acquires a vev: 〈a〉 = −θ̄fa
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Dynamical Relaxation of θ̄

add an axion: a pseudoscalar that couples to GG̃

L = θ̄
g2

s

32π2 GG̃ +
1
2
∂µa∂µa +

a
fa

g2
s

32π2 GG̃

=

(

θ̄ +
a
fa

)

g2
s

32π2 GG̃ +
1
2
∂µa∂µa

below the QCD scale a potential for the axion is induced

V (a) ∝
(

θ̄ +
a
fa

)2

axion acquires a vev: 〈a〉 = −θ̄fa

the GG̃ term vanishes in the vacuum
→ no contribution anymore to the neutron EDM
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The Neutron EDM from the CKM Matrix

with the QCD theta term switched off,
the dominant contributions to the neutron EDM in the SM

are not the EDMs of the constituent quarks

dn ≃ θ̄ × 2.5 × 10−16ecm + 1.1e(d̃d + 0.5d̃u) + 1.4(dd − 0.25du)

+contributions from the Weinberg operator

+contributions from 4 fermion operators
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The Neutron EDM from the CKM Matrix

with the QCD theta term switched off,
the dominant contributions to the neutron EDM in the SM

are not the EDMs of the constituent quarks

dn ≃ θ̄ × 2.5 × 10−16ecm + 1.1e(d̃d + 0.5d̃u) + 1.4(dd − 0.25du)

+contributions from the Weinberg operator

+contributions from 4 fermion operators

the dominant effect arises from a CP violating pion nucleon coupling that
is generated at the one loop level from a 4-fermion operator

can be as large as

dn ∼ 10−31 ecm

(Khriplovich, Zhitnitski 1982)
(Mannel, Uraltsev, 2012)
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The “Electron EDM” from the CKM Matrix

in the Standard Model, the contribution to EDMs of paramagnetic
systems from the electron is absolutely negligible (dSM

e ∼ 10−44ecm)

e.g. dTl ≃ −585de − e 43GeV × (C(0)
S − 0.2C(1)

S )
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The “Electron EDM” from the CKM Matrix

in the Standard Model, the contribution to EDMs of paramagnetic
systems from the electron is absolutely negligible (dSM

e ∼ 10−44ecm)

e.g. dTl ≃ −585de − e 43GeV × (C(0)
S − 0.2C(1)

S )

largest SM contribution comes from the
CP violating electron nucleon couplings

“equivalent electron EDM benchmark”

dequiv
e ∼ 10−39 ecm

(Pospelov, Ritz 2013)
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·

Standard Model Benchmarks for EDMs are
Many Orders of Magnitude Below

the Current Experimental Sensitivities

→ EDMs are “Background-Free” Probes
of New Physics
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·

EDMs and New Physics
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Fundamental CP-odd Phases
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EDM operators and SU(2)L Invariance

EDMs and CEDMs are helicity flipping

df
i
2
(f̄σµνγ5f )Fµν = df

i
2
(f̄Lσµν fR − f̄Rσµν fL)F

µν

→ EDM and CEDM operators are not SU(2)L invariant
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EDM operators and SU(2)L Invariance

EDMs and CEDMs are helicity flipping

df
i
2
(f̄σµνγ5f )Fµν = df

i
2
(f̄Lσµν fR − f̄Rσµν fL)F

µν

→ EDM and CEDM operators are not SU(2)L invariant

above the electro-weak scale, need to add a Higgs doublet to the
operators to restore SU(2)L invariance.

H(f̄Lσµν fR)Fµν
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EDM operators and SU(2)L Invariance

EDMs and CEDMs are helicity flipping

df
i
2
(f̄σµνγ5f )Fµν = df

i
2
(f̄Lσµν fR − f̄Rσµν fL)F

µν

→ EDM and CEDM operators are not SU(2)L invariant

above the electro-weak scale, need to add a Higgs doublet to the
operators to restore SU(2)L invariance.

1
Λ2 H(f̄Lσµν fR)Fµν
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EDM operators and SU(2)L Invariance

EDMs and CEDMs are helicity flipping

df
i
2
(f̄σµνγ5f )Fµν = df

i
2
(f̄Lσµν fR − f̄Rσµν fL)F

µν

→ EDM and CEDM operators are not SU(2)L invariant

above the electro-weak scale, need to add a Higgs doublet to the
operators to restore SU(2)L invariance.

1
Λ2 H(f̄Lσµν fR)Fµν →

v
Λ2 (f̄Lσµν fR)Fµν , df ∼

v
Λ2

→ EDMs and CEDMs are secretly dimension 6 operators and decouple
with the new physics scale Λ squared
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Model Independent Sensitivity to New Physics

example 1: down quark EDM

C̃
Λ2 Hyd (d̄LσµνdR)Fµν →

C̃
Λ2 md (d̄LσµνdR)Fµν , dd ∼

C̃md

Λ2

◮ Minimal Flavor Violation implies that the down EDM is proportional to
the down Yukawa coupling (→ lecture on Tuesday)

◮ constraint from neutron EDM, assuming C̃ ∼ 1 with O(1) phase

Λ & 50 TeV
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Model Independent Sensitivity to New Physics

example 1: down quark EDM

C̃
Λ2 Hyd (d̄LσµνdR)Fµν →

C̃
Λ2 md (d̄LσµνdR)Fµν , dd ∼

C̃md

Λ2

◮ Minimal Flavor Violation implies that the down EDM is proportional to
the down Yukawa coupling (→ lecture on Tuesday)

◮ constraint from neutron EDM, assuming C̃ ∼ 1/16π2 with O(1) phase

Λ & 5 TeV

example 2: electron EDM

C̃
Λ2 Hye(ēLσµνeR)Fµν →

C̃
Λ2 me (ēLσµνeR)Fµν , de ∼

C̃me

Λ2

◮ MFV: proportionality to electron Yukawa
◮ constraint from ThO EDM, assuming C̃ ∼ 1 with O(1) phase

Λ & 300 TeV
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Model Independent Sensitivity to New Physics

example 1: down quark EDM

C̃
Λ2 Hyd (d̄LσµνdR)Fµν →

C̃
Λ2 md (d̄LσµνdR)Fµν , dd ∼

C̃md

Λ2

◮ Minimal Flavor Violation implies that the down EDM is proportional to
the down Yukawa coupling (→ lecture on Tuesday)

◮ constraint from neutron EDM, assuming C̃ ∼ 1/16π2 with O(1) phase

Λ & 5 TeV

example 2: electron EDM

C̃
Λ2 Hye(ēLσµνeR)Fµν →

C̃
Λ2 me (ēLσµνeR)Fµν , de ∼

C̃me

Λ2

◮ MFV: proportionality to electron Yukawa
◮ constraint from ThO EDM, assuming C̃ ∼ 1/16π2 with O(1) phase

Λ & 30 TeV
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The Minimal Supersymmetric Standard Model

Supersymmetry (SUSY) implies:
every fermion has a bosonic partner

and vice versa

requires 2 Higgs doublets to give mass
to up-type and down-type fermions

tanβ = 〈Hu〉/〈Hd 〉

expect at least some SUSY particles
(Higgsinos, stops, gluinos)

at or below O(TeV) for a
natural electro-weak scale
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

squark and slepton masses
→ 15 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2

m2
QQ̃†

LQ̃L+m2
U Ũ†

RŨR+m2
DD̃†

RD̃R

+m2
LL̃†

LL̃L + m2
E Ẽ†

RẼR
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

squark and slepton masses
→ 15 phases

gaugino masses
→ 3 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2

m2
QQ̃†

LQ̃L+m2
U Ũ†

RŨR+m2
DD̃†

RD̃R

+m2
LL̃†

LL̃L + m2
E Ẽ†

RẼR

m1B̃B̃+m2W̃W̃ +m3g̃g̃

Wolfgang Altmannshofer (PI) Electric Dipole Moments April 1, 2014 34 / 39



CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

squark and slepton masses
→ 15 phases

gaugino masses
→ 3 phases

trilinear couplings
→ 27 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2

m2
QQ̃†

LQ̃L+m2
U Ũ†

RŨR+m2
DD̃†

RD̃R

+m2
LL̃†

LL̃L + m2
E Ẽ†

RẼR

m1B̃B̃+m2W̃W̃ +m3g̃g̃

Au HuQ̃†

LŨR+Ad HdQ̃†

LD̃R+Aℓ Hd L̃†

LẼR
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

squark and slepton masses
→ 15 phases

gaugino masses
→ 3 phases

trilinear couplings
→ 27 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2

m2
QQ̃†

LQ̃L+m2
U Ũ†

RŨR+m2
DD̃†

RD̃R

+m2
LL̃†

LL̃L + m2
E Ẽ†

RẼR

m1B̃B̃+m2W̃W̃ +m3g̃g̃

Au HuQ̃†

LŨR+Ad HdQ̃†

LD̃R+Aℓ Hd L̃†

LẼR

not all phases are physical! (like in the case of the CKM matrix)
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CP Violation in the MSSM

The MSSM can contain many new sources of CP violation

bla
Higgsino and Higgs masses
→ 2 phases

squark and slepton masses
→ 15 phases

gaugino masses
→ 3 phases

trilinear couplings
→ 27 phases

µH̃uH̃d+BµHuHd+m2
Hu
|Hu |

2+m2
Hd
|Hd |

2

m2
QQ̃†

LQ̃L+m2
U Ũ†

RŨR+m2
DD̃†

RD̃R

+m2
LL̃†

LL̃L + m2
E Ẽ†

RẼR

m1B̃B̃+m2W̃W̃ +m3g̃g̃

Au HuQ̃†

LŨR+Ad HdQ̃†

LD̃R+Aℓ Hd L̃†

LẼR

not all phases are physical! (like in the case of the CKM matrix)

2 phases can be rotated away...
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1-Loop MSSM Contributions to EDMs

Example 1:
Bino-Higgsino loop contribution

to the electron EDM

eR eL

ẽR ẽL

B̃

γ

de ∝
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1-Loop MSSM Contributions to EDMs

Example 1:
Bino-Higgsino loop contribution

to the electron EDM

eR eL

ẽR ẽL

B̃

γ

de ∝
α1

4π

◮ 1-loop suppression
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1-Loop MSSM Contributions to EDMs

Example 1:
Bino-Higgsino loop contribution

to the electron EDM

eR eL

ẽR ẽL

B̃

γ

de ∝
α1

4π
me

◮ 1-loop suppression

◮ helicity suppression
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1-Loop MSSM Contributions to EDMs

Example 1:
Bino-Higgsino loop contribution

to the electron EDM

eR eL

ẽR ẽL

B̃

γ

de ∝
α1

4π
me tanβ

◮ 1-loop suppression

◮ helicity suppression

◮ tanβ enhancement
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1-Loop MSSM Contributions to EDMs

Example 1:
Bino-Higgsino loop contribution

to the electron EDM

eR eL

ẽR ẽL

B̃

γ

de ∝
α1

4π
me tanβ

Im(µmB̃)

m4
ẽ

◮ 1-loop suppression

◮ helicity suppression

◮ tanβ enhancement

◮ sensitive to the relative phase of
the bino and higgsino mass
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1-Loop MSSM Contributions to EDMs

Example 2:
gluino loop contribution
to the down quark EDM

dR dL

d̃R d̃L

g̃

γ, g

dd ∝
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1-Loop MSSM Contributions to EDMs

Example 2:
gluino loop contribution
to the down quark EDM

dR dL

d̃R d̃L

g̃

γ, g

dd ∝
αs

4π
md tanβ

Im(µmg̃)

m4
d̃

◮ 1-loop suppression

◮ helicity suppression

◮ tanβ enhancement

◮ sensitive to the relative phase of
the gluino and higgsino mass
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1-Loop MSSM Contributions to EDMs

Example 2:
gluino loop contribution
to the down quark EDM

dR dL

d̃R d̃L

g̃

γ, g

dd ∝
αs

4π
md tanβ

Im(µmg̃)

m4
d̃

◮ 1-loop suppression

◮ helicity suppression

◮ tanβ enhancement

◮ sensitive to the relative phase of
the gluino and higgsino mass

sensitivity to squarks and sleptons at the level of
several TeV to several 10’s of TeV (depending on tanβ)
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The SUSY CP Problem

(Hisano @ Moriond EW 2014)

EDM bounds push SUSY particles
far above the TeV scale

assumptions:

no cancellations between
various contributions

order 1 CP violating phases
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The SUSY CP Problem

(Pospelov, Ritz 2005)

possible cancellations can be
constrained by looking at several
EDM constraints simultaneously

in the plot:

mSUSY = 500GeV , tan β = 3

consider phase of the Higgsino
mass θµ; and universal phase of all

trilinear couplings θA
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Attempts to Avoid too Large EDMs

decoupling ↔ small CP phases
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decouple 1st and 2nd generation sfermions:
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Attempts to Avoid too Large EDMs

decoupling ↔ small CP phases

decouple (some or all) SUSY particles:
split SUSY, or high scale SUSY → electro-weak scale is fine tuned

decouple 1st and 2nd generation sfermions:
effective SUSY → compatible with naturalness

switch off CP phases using a
smart SUSY breaking mediation mechanism:

pure gauge mediation → Higgs mass pushes squarks up to O(10) TeV
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Attempts to Avoid too Large EDMs

decoupling ↔ small CP phases

decouple (some or all) SUSY particles:
split SUSY, or high scale SUSY → electro-weak scale is fine tuned

decouple 1st and 2nd generation sfermions:
effective SUSY → compatible with naturalness

switch off CP phases using a
smart SUSY breaking mediation mechanism:

pure gauge mediation → Higgs mass pushes squarks up to O(10) TeV

+ many other clever constructions that try to suppress CP phases
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2-Loop MSSM Contributions to EDMs

in many decoupling frameworks, 2-loop Barr-Zee contributions
can still give sizable contributions to EDMs
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2-Loop MSSM Contributions to EDMs

in many decoupling frameworks, 2-loop Barr-Zee contributions
can still give sizable contributions to EDMs

e.g. stop loops in effective SUSY

f ff

t̃L t̃R

t̃RA γ

γ

d2loop
f ∝

e4

(16π2)2

mf

m2
A

µAt

m2
t̃
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2-Loop MSSM Contributions to EDMs

in many decoupling frameworks, 2-loop Barr-Zee contributions
can still give sizable contributions to EDMs

e.g. stop loops in effective SUSY

f ff

t̃L t̃R

t̃RA γ

γ

d2loop
f ∝

e4

(16π2)2

mf

m2
A

µAt

m2
t̃

e.g. chargino loops in split SUSY

fR fL fL

H̃u W̃

H̃d W̃

h γ

γ

d2loop
f ∝

e4

(16π2)2

mf

mW̃µ
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2-Loop MSSM Contributions to EDMs

in many decoupling frameworks, 2-loop Barr-Zee contributions
can still give sizable contributions to EDMs

e.g. stop loops in effective SUSY

f ff

t̃L t̃R

t̃RA γ

γ

d2loop
f ∝

e4

(16π2)2

mf

m2
A

µAt

m2
t̃

e.g. chargino loops in split SUSY

fR fL fL

H̃u W̃

H̃d W̃

h γ

γ

d2loop
f ∝

e4

(16π2)2

mf

mW̃µ

current bounds on EDMs start to probe the 2 loop contributions if the
involved particles are at the TeV scale
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Summary

◮ Electric Dipole Moments are sensitive to CP violation
beyond the Standard Model at the TeV scale and beyond

◮ Standard Model “background” is negligible
for the foreseeable future

◮ EDMs of atoms, molecules, nucleons, etc
are sensitive to different combinations
of CP violating interactions

→ possibility to disentangle the source
→ by measuring many different EDMs
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